INTERNATIONAL A LEVEL

Pure Mathematics 2

Chapter review 2

1 a $Q R$ is the diameter of the circle so the centre, C, is the midpoint of $Q R$
Midpoint $=\left(\frac{11+(-5)}{2}, \frac{12+0}{2}\right)=(3,6)$
$C(3,6)$
b Radius $=\frac{1}{2}$ of diameter $=\frac{1}{2}$ of $Q R=\frac{1}{2}$ of $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\frac{1}{2} \text { of } \sqrt{(-5-11)^{2}+(0-12)^{2}} \\
& =\frac{1}{2} \text { of } \sqrt{400} \\
& =\frac{1}{2} \text { of } 20=10 \text { units }
\end{aligned}
$$

c Circle with centre $(3,6)$ and radius 10 :
$(x-3)^{2}+(y-6)^{2}=100$
d $P(13,6)$ lies on the circle if P satisfies the equation, so substitute $x=13$ and $y=6$ into the equation of the circle:
$(13-3)^{2}+(6-6)^{2}=100+0=100$
Therefore, P lies on the circle.
2 The distance between $(0,0)$ and $(5,-2)$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(5-0)^{2}+(-2-0)^{2}}=\sqrt{5^{2}+(-2)^{2}}=\sqrt{25+4}=\sqrt{29}$
The radius of the circle is $\sqrt{30}$.
As $\sqrt{29}<\sqrt{30}(0,0)$ lies inside the circle.
3 a $x^{2}+3 x+y^{2}+6 y=3 x-2 y-7$
$x^{2}+y^{2}+8 y=-7$
Completing the square gives:
$(x-0)^{2}+(y+4)^{2}-16=-7$ $(x-0)^{2}+(y+4)^{2}=9$
Centre of the circle is $(0,-4)$ and the radius is 3 .
b The circle intersects the y-axis at $x=0$

$$
\begin{array}{r}
(0-0)^{2}+(y+4)^{2}=9 \\
y^{2}+8 y+16=9 \\
y^{2}+8 y+7=0 \\
(y+1)(y+7)=0 \\
y=-1 \text { or } y=-7 \\
(0,-1) \text { and }(0,-7) \\
\text { c At the } x \text {-axis, } y=0 \\
x^{2}+0^{2}+8(0)=-7 \\
x^{2}=-7
\end{array}
$$

There are no real solutions, so the circle does not intersect the x-axis.

Pure Mathematics 2

4 a The centre of $(x-8)+(y-8)^{2}=117$ is $(8,8)$.
Substitute $(8,8)$ into $(x+1)^{2}+(y-3)^{2}=106$
$(8+1)^{2}+(8-3)^{2}=9^{2}+5^{2}=81+25=106 \checkmark$
So $(8,8)$ lies on the circle $(x+1)^{2}+(y-3)^{2}=106$.
b As Q is the centre of the circle $(x+1)^{2}+(y-3)^{2}=106$ and P lies on this circle, the length $P Q$ must equal the radius.
So $P Q=\sqrt{106}$
Alternative method: Work out the distance between $P(8,8)$ and $Q(-1,3)$ using the distance formula.

5 a Substitute $(-1,0)$ into $x^{2}+y^{2}=1$
$(-1)^{2}+(0)^{2}=1+0=1 \checkmark$
So $(-1,0)$ is on the circle.

Substitute $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ into $x^{2}+y^{2}=1$
$\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{1}{4}+\frac{3}{4}=1 \checkmark$
So $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is on the circle.

Substitute $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ into $x^{2}+y^{2}=1$
$\left(\frac{1}{2}\right)^{2}+\left(-\frac{\sqrt{3}}{2}\right)^{2}=\frac{1}{4}+\frac{3}{4}=1 \checkmark$
So $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ is on the circle.

INTERNATIONAL A LEVEL

Pure Mathematics 2

5 b The distance between $(-1,0)$ and $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is

$$
\begin{aligned}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & =\sqrt{\left(\frac{1}{2}-(-1)\right)^{2}+\left(\frac{\sqrt{3}}{2}-0\right)^{2}} \\
& =\sqrt{\left(\frac{1}{2}+1\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& =\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& =\sqrt{\frac{9}{4}+\frac{3}{4}} \\
& =\sqrt{\frac{12}{4}} \\
& =\sqrt{3}
\end{aligned}
$$

The distance between $(-1,0)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(\frac{1}{2}-(-1)\right)^{2}+\left(-\frac{\sqrt{3}}{2}-0\right)^{2}}
$$

$$
=\sqrt{\left(\frac{1}{2}+1\right)^{2}+\left(-\frac{\sqrt{3}}{2}\right)^{2}}
$$

$$
=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(-\frac{\sqrt{3}}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{9}{4}+\frac{3}{4}}
$$

$$
=\sqrt{\frac{12}{4}}
$$

$$
=\sqrt{3}
$$

The distance between $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ is

$$
\begin{aligned}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & =\sqrt{\left(\frac{1}{2}-\frac{1}{2}\right)^{2}+\left(-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)^{2}} \\
& =\sqrt{0^{2}+(-\sqrt{3})^{2}} \\
& =\sqrt{0+3} \\
& =\sqrt{3}
\end{aligned}
$$

So $A B, B C$ and $A C$ all equal $\sqrt{3} . \triangle A B C$ is equilateral.

Pure Mathematics 2

6 a $(x-k)^{2}+(y-3 k)^{2}=13,(3,0)$
Substitute $x=3$ and $y=0$ into the equation of the circle.

$$
\begin{aligned}
&(3-k)^{2}+(0-3 k)^{2}=13 \\
& 9-6 k+k^{2}+9 k^{2}-13=0 \\
& 10 k^{2}-6 k-4=0 \\
& 5 k^{2}-3 k-2=0 \\
&(5 k+2)(k-1)=0 \\
& k=-\frac{2}{5} \text { or } k=1
\end{aligned}
$$

b As $k>0, k=1$
Equation of the circle is $(x-1)^{2}+(y-3)^{2}=13$
$7 x^{2}+p x+y^{2}+4 y=20, y=3 x-9$
Substitute $y=3 x-9$ into the equation $x^{2}+p x+y^{2}+4 y=20$

$$
\begin{aligned}
x^{2}+p x+(3 x-9)^{2}+4(3 x-9) & =20 \\
x^{2}+p x+9 x^{2}-54 x+81+12 x-36-20 & =0 \\
10 x^{2}+(p-42) x+25 & =0
\end{aligned}
$$

There are no solutions, so using the discriminant $b^{2}-4 a c<0$:

$$
\begin{aligned}
&(p-42)^{2}-4(10)(25)<0 \\
&(p-42)^{2}<1000 \\
& p-42< \pm \sqrt{1000} \\
& p<42 \pm \sqrt{1000} \\
& p<42 \pm 10 \sqrt{10} \\
& 42-10 \sqrt{10}<p<42+10 \sqrt{10}
\end{aligned}
$$

INTERNATIONAL A LEVEL

Pure Mathematics 2

8 Substitute $x=0$ into $y=2 x-8$
$y=2(0)-8$
$y=-8$
Substitute $y=0$ into $y=2 x-8$
$0=2 x-8$
$2 x=8$
$x=4$
The line meets the coordinate axes at $(0,-8)$ and $(4,0)$.
The coordinates of the centre of the circle are at the midpoint:
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{0+4}{2}, \frac{-8+0}{2}\right)=\left(\frac{4}{2}, \frac{-8}{2}\right)=(2,-4)$
The length of the diameter is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(4-0)^{2}+(0-(-8))^{2}}=\sqrt{4^{2}+8^{2}}=\sqrt{80}=\sqrt{16 \times 5}=4 \sqrt{5}
$$

So the length of the radius is $\frac{4 \sqrt{5}}{2}=2 \sqrt{5}$.
The centre of the circle is $(2,-4)$ and the radius is $2 \sqrt{5}$.
The equation of the circle is

$$
\begin{aligned}
\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2} & =r^{2} \\
(x-2)^{2}+(y-(-4))^{2} & =(2 \sqrt{5})^{2} \\
(x-2)^{2}+(y+4)^{2} & =20
\end{aligned}
$$

9 a The radius is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(8-4)^{2}+(10-0)^{2}}=\sqrt{4^{2}+10^{2}}=\sqrt{16+100}=\sqrt{116}=2 \sqrt{29}$
b

The centre is on the perpendicular bisector of $(4,0)$ and $(a, 0$.$) So$
$\frac{4+a}{2}=8$
$4+a=16$
$a=12$

Pure Mathematics 2

10 Substitute $y=0$ into $(x-5)^{2}+y^{2}=36$

$$
\begin{aligned}
(x-5)^{2} & =36 \\
x-5 & =\sqrt{36} \\
x-5 & = \pm 6
\end{aligned}
$$

So $x-5=6 \Rightarrow x=11$
and $x-5=-6 \Rightarrow x=-1$
The coordinates of P and Q are $(-1,0)$ and $(11,0)$.
11 Substitute $x=0$ into $(x+4)^{2}+(y-7)^{2}=121$

$$
\begin{aligned}
4^{2}+(y-7)^{2} & =121 \\
16+(y-7)^{2} & =121 \\
(y-7)^{2} & =105 \\
y-7 & = \pm \sqrt{105}
\end{aligned}
$$

So $y=7 \pm \sqrt{105}$
The values of m and n are $7+\sqrt{105}$ and $7-\sqrt{105}$.
$12 \mathbf{a}(x+5)^{2}+(y+2)^{2}=125, A(a, 0), B(0, b)$
At $A(a, 0):(a+5)^{2}+(0+2)^{2}=125$

$$
\begin{aligned}
a^{2}+10 a+25+4-125 & =0 \\
a^{2}+10 a-96 & =0 \\
(a+16)(a-6) & =0
\end{aligned}
$$

As $a>0, a=6$
At $B(0, b):(0+5)^{2}+(b+2)^{2}=125$

$$
25+b^{2}+4 b+4-125=0
$$

$$
b^{2}+4 b-96=0
$$

$$
(b+12)(b-8)=0
$$

As $b>0, b=8$
So $a=6, b=8$

Pure Mathematics 2

12 b $A(6,0), B(0,8)$
gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-0}{0-6}=-\frac{4}{3}$
y-intercept $=8$
Equation of the line $A B$ is $y=-\frac{4}{3} x+8$
c Area of triangle $O A B=\frac{1}{2} \times 6 \times 8=24$ units 2
13 a By symmetry $p=0$.

Using Pythagoras' theorem

$$
\begin{aligned}
q^{2}+7^{2} & =25^{2} \\
q^{2}+49 & =625 \\
q^{2} & =576 \\
q & = \pm \sqrt{576} \\
q & = \pm 24 \\
\text { As } q>0, q & =24 .
\end{aligned}
$$

b The circle meets the y-axis at $q \pm r$; i.e.
at $24+25=49$
and $24-25=-1$
So the coordinates are $(0,49)$ and $(0,-1)$.

Pure Mathematics 2

14 The gradient of the line joining $(-3,-7)$ and $(5,1)$ is
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-7)}{5-(-3)}=\frac{1+7}{5+3}=\frac{8}{8}=1$
So the gradient of the tangent is $-\frac{1}{(1)}=-1$.
The equation of the tangent is

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-7)=-1(x-(-3)) \\
y+7=-1(x+3) \\
y+7=-x-3 \\
y=-x-10 \text { or } x+y+10=0
\end{gathered}
$$

Pure Mathematics 2

15

Let the coordinates of C be (p, q).
$(2,-1)$ is the mid-point of $(3,7)$ and (p, q)
So $\frac{3+p}{2}=2$ and $\frac{7+q}{2}=-1$

$$
\begin{aligned}
\frac{3+p}{2} & =2 \\
3+p & =4 \\
p & =1 \\
\frac{7+q}{2} & =-1 \\
7+q & =-2 \\
q & =-9
\end{aligned}
$$

So the coordinates of C are $(1,-9)$.
The length of $A B$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-5-3)^{2}+(3-7)^{2}}=\sqrt{(-8)^{2}+(-4)^{2}}=\sqrt{64+16}=\sqrt{80}
$$

The length of $B C$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-5-1)^{2}+(3-(-9))^{2}}=\sqrt{(-6)^{2}+(12)^{2}}=\sqrt{36+144}=\sqrt{180}
$$

The area of $\triangle A B C$ is
$\frac{1}{2} \sqrt{180} \sqrt{80}=\frac{1}{2} \sqrt{14400}=\frac{1}{2} \sqrt{144 \times 100}=\frac{1}{2} \sqrt{144} \times \sqrt{100}=\frac{1}{2} \times 12 \times 10=60$

INTERNATIONAL A LEVEL

Pure Mathematics 2

$16 \quad(x-6)^{2}+(y-5)^{2}=17$
Centre of the circle is $(6,5)$.
Equation of the line touching the circle is $y=m x+12$
Substitute the equation of the line into the equation of the circle:

$$
\begin{aligned}
(x-6)^{2}+(m x+7)^{2} & =17 \\
x^{2}-12 x+36+m^{2} x^{2}+14 m x+49-17 & =0 \\
\left(1+m^{2}\right) x^{2}+(14 m-12) x+68 & =0
\end{aligned}
$$

There is one solution so using the discriminant $b^{2}-4 a c=0$:

$$
\begin{aligned}
(14 m-12)^{2}-4\left(1+m^{2}\right)(68) & =0 \\
196 m^{2}-336 m+144-272 m^{2}-272 & =0 \\
76 m^{2}+336 m+128 & =0 \\
19 m^{2}+84 m+32 & =0 \\
(19 m+8)(m+4) & =0
\end{aligned}
$$

17 a Gradient of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-7}{5-3}=-3$
Midpoint of $A B=\left(\frac{3+5}{2}, \frac{7+1}{2}\right)=(4,4)$
$M(4,4)$
Line l is perpendicular to $A B$, so gradient of line $l=\frac{1}{3}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{1}{3}(x-4) \\
& y=\frac{1}{3} x+\frac{8}{3}
\end{aligned}
$$

b $C(-2, \mathrm{c})$
$y=\frac{1}{3}(-2)+\frac{8}{3}=2$
$C(-2,2)$
Radius of the circle $=$ distance $C A$

$$
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-2-3)^{2}+(2-7)^{2}}=\sqrt{50}
$$

Equation of the circle is $(x+2)^{2}+(y-2)^{2}=50$
c Base of triangle $=$ distance $A B=\sqrt{(5-3)^{2}+(1-7)^{2}}=\sqrt{40}$
Height of triangle $=$ distance $C M=\sqrt{(4+2)^{2}+(4-2)^{2}}=\sqrt{40}$
Area of triangle $A B C=\frac{1}{2} \times \sqrt{40} \times \sqrt{40}=20$ units 2

Pure Mathematics 2

$18 \mathbf{a}(x-3)^{2}+(y+3)^{2}=52$
The equations of the lines l_{1} and l_{2} are $y=\frac{3}{2} x+\mathrm{c}$
Diameter of the circle that touches l_{1} and l_{2} has gradient $-\frac{2}{3}$ and passes through the centre of the circle $(3,-3)$

$$
\begin{aligned}
y & =-\frac{2}{3} x+d \\
-3 & =-\frac{2}{3}(3)+d \\
d & =-1 \\
y & =-\frac{2}{3} x-1 \text { is the equation of the diameter that touches } l_{1} \text { and } l_{2} .
\end{aligned}
$$

Solve the equation of the diameter and circle simultaneously:

$$
\begin{aligned}
&(x-3)^{2}+\left(-\frac{2}{3} x+2\right)^{2}=52 \\
& x^{2}-6 x+9+\frac{4}{9} x^{2}-\frac{8}{3} x+4-52=0 \\
& \frac{13}{9} x^{2}-\frac{26}{3} x-39=0 \\
& 13 x^{2}-78 x-351=0 \\
& x^{2}-6 x-27=0 \\
&(x-9)(x+3)=0 \\
& x=9 \text { or } x=-3
\end{aligned}
$$

When $x=9, y=-\frac{2}{3}(9)-1=-7$
When $x=-3, y=-\frac{2}{3}(-3)-1=1$
$(9,-7)$ and $(-3,1)$ are the coordinates where the diameter touches lines 1_{1} and 1_{2}. $P(9,-7)$ and $Q(-3,1)$
b The equations of the lines l_{1} and l_{2} are $y=\frac{3}{2} x+c$
l_{1} touches the circle at $(-3,1)$:
$1=\frac{3}{2}(-3)+c, c=\frac{11}{2}$, so $y=\frac{3}{2} x+\frac{11}{2}$
l_{2} touches the circle at $(9,-7)$: $-7=\frac{3}{2}(9)+c, c=-\frac{41}{2}$, so $y=\frac{3}{2} x-\frac{41}{2}$.

Pure Mathematics 2

19a $x^{2}+6 x+y^{2}-2 y=7$
Equation of the lines are $y=m x+6$
Substitute $y=m x+6$ into the equation of the circle:

$$
x^{2}+6 x+(m x+6)^{2}-2(m x+6)=7
$$

$x^{2}+6 x+m^{2} x^{2}+12 m x+36-2 m x-12-7=0$

$$
\left(1+m^{2}\right) x^{2}+(6+10 m) x+17=0
$$

There is one solution so using the discriminant $b^{2}-4 a c=0$:

$$
\begin{aligned}
(6+10 m)^{2}-4\left(1+m^{2}\right)(17) & =0 \\
100 m^{2}+120 m+36-68 m^{2}-68 & =0 \\
32 m^{2}+120 m-32 & =0 \\
4 m^{2}+15 m-4 & =0 \\
(4 m-1)(m+4) & =0
\end{aligned}
$$

$m=\frac{1}{4}$ or $m=-4$
$y=\frac{1}{4} x+6$ and $y=-4 x+6$
b The gradient of $l_{1}=\frac{1}{4}$ and the gradient of $l_{2}=-4$, so the two lines are perpendicular, Therefore, $A P R Q$ is a square.
$x^{2}+6 x+y^{2}-2 y=7$
Completing the square:
$(x+3)^{2}-9+(y-1)^{2}-1=7$

$$
(x+3)^{2}+(y-1)^{2}=17
$$

Radius $=\sqrt{17}$
Let point P have the coordinates (x, y)
Using Pythagoras' theorem:
$l_{2}:(0-x)^{2}+(6-y)^{2}=17$
Using the equation for $l_{2}, y=\frac{1}{4} x+6,(0-x)^{2}+\left(6-\left(\frac{1}{4} x+6\right)\right)^{2}=17$

$$
\begin{aligned}
x^{2}+\frac{1}{16} x^{2} & =17 \\
\frac{17}{16} x^{2} & =17 \\
x^{2} & =16 \\
x & = \pm 4
\end{aligned}
$$

From the diagram we know that x is negative, so $x=-4, y=\frac{1}{4}(-4)+6=5$
$P(-4,5)$
Now let point Q have the coordinates (x, y).
Using the equation for $l_{1}, y=-4 x+6,(0-x)^{2}+(6-(-4 x+6))^{2}=17$

$$
\begin{aligned}
x^{2}+16 x^{2} & =17 \\
17 x^{2} & =17 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

From the diagram x is positive, so $x=1, y=-4(1)+6=2$ $Q(1,2)$

Pure Mathematics 2

19 c Area of the square $=$ radius $^{2}=17$ units 2
20 a Equation of the circle: $(x-6)^{2}+(y-9)^{2}=50$
Equation of $l_{1}: y=-x+21$
Substitute the equation of the line into the equation of the circle:

$$
\begin{aligned}
(x-6)^{2}+(-x+12)^{2} & =50 \\
x^{2}-12 x+36+x^{2}-24 x+144-50 & =0 \\
2 x^{2}-36 x+130 & =0 \\
x^{2}-18 x+65 & =0 \\
(x-13)(x-5) & =0
\end{aligned}
$$

$x=13$ or $x=5$
When $x=13, y=-13+21=8$
When $x=5, y=-5+21=16$
$P(5,16)$ and $Q(13,8)$
20 b The gradient of the line $A P=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-16}{6-5}=-7$
So the gradient of the line perpendicular to $A P, l_{2}$, is $\frac{1}{7}$.
The equation of the perpendicular line is
$y-y_{1}=m\left(x-x_{1}\right)$
$m=\frac{1}{7}$ and $\left(x_{1}, y_{1}\right)=P(5,16)$
So $y-16=\frac{1}{7}(x-5)$
$y=\frac{1}{7} x+\frac{107}{7}$
The gradient of the line $A Q=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-8}{6-13}=-\frac{1}{7}$
So the gradient of the line perpendicular to $A Q, l_{3}$, is 7 .
The equation of the perpendicular line is
$y-y_{1}=m\left(x-x_{1}\right)$
$m=7$ and $\left(x_{1}, y_{1}\right)=Q(13,8)$
So $y-8=7(x-13)$
$y=7 x-83$
$l_{2}: y=\frac{1}{7} x+\frac{107}{7}$ and $l_{3}: y=7 x-83$
c The gradient of the line $P Q=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-16}{13-5}=-1$
So the gradient of the line perpendicular to $P Q, l_{4}$, is 1 .
The equation of the perpendicular line is
$y-y_{1}=m\left(x-x_{1}\right)$
$m=1$ and $\left(x_{1}, y_{1}\right)=A(6,9)$
So $y-9=1(x-6)$
$l_{4}: y=x+3$

INTERNATIONAL A LEVEL

Pure Mathematics 2

20 d $l_{2}: y=\frac{1}{7} x+\frac{107}{7}, l_{3}: y=7 x-83$ and $l_{4}: y=x+3$
Solve these equations simultaneously one pair at a time:
l_{2} and $l_{3}: \frac{1}{7} x+\frac{107}{7}=7 x-83$

$$
\begin{aligned}
x+107 & =49 x-581 \\
48 x & =688
\end{aligned}
$$

$x=\frac{43}{3}$, so $y=7\left(\frac{43}{3}\right)-83=\frac{52}{3}$
l_{2} and l_{3} intersect at $\left(\frac{43}{3}, \frac{52}{3}\right)$.
l_{3} and $l_{4}: 7 x-83=x+3$
$6 x=86$
$x=\frac{43}{3}$, so $y=\frac{43}{3}+3=\frac{52}{3}$
Therefore all three lines intersect at $R\left(\frac{43}{3}, \frac{52}{3}\right)$
e Area of kite $A P R Q=\frac{1}{2} \times A R \times P Q$

$$
\begin{aligned}
& P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(13-5)^{2}+(8-16)^{2}}=\sqrt{128}=8 \sqrt{2} \\
& A R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(\frac{43}{3}-6\right)^{2}+\left(\frac{52}{3}-9\right)^{2}}=\sqrt{\left(\frac{25}{3}\right)^{2}+\left(\frac{25}{3}\right)^{2}}=\sqrt{\frac{1250}{9}}=\frac{25 \sqrt{2}}{3} \\
& \text { Area }=\frac{1}{2} \times \frac{25 \sqrt{2}}{3} \times 8 \sqrt{2}=\frac{200}{3}
\end{aligned}
$$

21 a $y=-3 x+12$
Substitute $x=0$ into $y=-3 x+12$

$$
y=-3(0)+12=12
$$

So A is $(0,12)$
Substitute $y=0$ into $y=-3 x+12$

$$
\begin{aligned}
0 & =-3 x+12 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

So B is $(4,0)$.
b The mid-point of $A B$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{0+4}{2}, \frac{12+0}{2}\right)=(2,6)
$$

INTERNATIONAL A LEVEL

Pure Mathematics 2

21 c

$\angle A O B=90^{\circ}$, so $A B$ is a diameter of the circle.
The centre of the circle is the mid-point of $A B$, i.e. $(2,6)$.
The length of the diameter $A B$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(4-0)^{2}+(0-12)^{2}}=\sqrt{4^{2}+(-12)^{2}}=\sqrt{16+144}=\sqrt{160}$
So the radius of the circle is $\frac{\sqrt{160}}{2}$.
The equation of the circle is

$$
\begin{aligned}
& (x-2)^{2}+(y-6)^{2}=\left(\frac{\sqrt{160}}{2}\right)^{2} \\
& (x-2)^{2}+(y-6)^{2}=\frac{160}{4} \\
& (x-2)^{2}+(y-6)^{2}=40
\end{aligned}
$$

22 a $A(-3,-2), B(-6,0)$ and $C(1, q)$
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-6+3)^{2}+(0+2)^{2}}=\sqrt{13}$

Diameter $=B C=\sqrt{(1+6)^{2}+(q-0)^{2}}=\sqrt{49+q^{2}}$
$A C=\sqrt{(1+3)^{2}+(q+2)^{2}}=\sqrt{16+q^{2}+4 q+4}=\sqrt{q^{2}+4 q+20}$
Using Pythagoras' theorem $A C^{2}+A B^{2}=B C^{2}$:

$$
\begin{aligned}
\left(q^{2}+4 q+20\right)+13 & =49+q^{2} \\
4 q-16 & =0 \\
q & =4
\end{aligned}
$$

b The centre of the circle is the midpoint of $B(-6,0)$ and $C(1,4)$
Midpoint $B C=\left(\frac{-6+1}{2}, \frac{0+4}{2}\right)=\left(-\frac{5}{2}, 2\right)$
The radius is half of $B C=\frac{1}{2}$ of $\sqrt{49+q^{2}}=\frac{1}{2}$ of $\sqrt{49+4^{2}}=\frac{1}{2}$ of $\sqrt{65}=\frac{\sqrt{65}}{2}$
Equation of the circle is $\left(x+\frac{5}{2}\right)^{2}+(y-2)^{2}=\left(\frac{\sqrt{65}}{2}\right)^{2}$

$$
\left(x+\frac{5}{2}\right)^{2}+(y-2)^{2}=\frac{65}{4}
$$

Pure Mathematics 2

23 a $R(-4,3), S(7,4)$ and $T(8,-7)$
$R T=\sqrt{(8+4)^{2}+(-7-3)^{2}}=\sqrt{244}$
$R S=\sqrt{(7+4)^{2}+(4-3)^{2}}=\sqrt{122}$
$S T=\sqrt{(8-7)^{2}+(-7-4)^{2}}=\sqrt{122}$
Using Pythagoras' theorem, $S T^{2}+R S^{2}=122+122=244=R T^{2}$, therefore, $R T$ is the diameter of the circle.
b The radius of the circle is
$\frac{1}{2} \times$ diameter $=\frac{1}{2} \sqrt{244}=\frac{1}{2} \sqrt{4 \times 61}=\frac{1}{2} \sqrt{4} \times \sqrt{61}=\frac{1}{2} \times 2 \sqrt{61}=\sqrt{61}$
The centre of the circle is the mid-point of $R T$:
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-4+8}{2}, \frac{3+(-7)}{2}\right)=\left(\frac{4}{2}, \frac{-4}{2}\right)=(2,-2)$
So the equation of the circle is

$$
(x-2)^{2}+(y+2)^{2}=(\sqrt{61})^{2} \text { or }(x-2)^{2}+(y+2)^{2}=61
$$

Pure Mathematics 2

$24 \quad A(-4,0), B(4,8)$ and $C(6,0)$
The gradient of the line $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-0}{4+4}=1$
So the gradient of the line perpendicular to $A B$, is -1 .
Midpoint of $A B=\left(\frac{-4+4}{2}, \frac{0+8}{2}\right)=(0,4)$
The equation of the perpendicular line through the midpoint of $A B$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=-1 \text { and }\left(x_{1}, y_{1}\right)=(0,4)
\end{aligned}
$$

$$
\text { So } y-4=-(x-0)
$$

$$
y=-x+4
$$

The gradient of the line $B C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-8}{6-4}=-4$
So the gradient of the line perpendicular to BC , is $\frac{1}{4}$.
Midpoint of $B C=\left(\frac{4+6}{2}, \frac{8+0}{2}\right)=(5,4)$
The equation of the perpendicular line through the midpoint of $B C$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=\frac{1}{4} \text { and }\left(x_{1}, y_{1}\right)=(5,4) \\
& \text { So } y-4=\frac{1}{4}(x-5) \\
& \quad y=\frac{1}{4} x+\frac{11}{4}
\end{aligned}
$$

Solving these two equations simultaneously will give the centre of the circle:

$$
\left.\begin{array}{l}
\quad \begin{array}{l}
-x+4=\frac{1}{4} x+\frac{11}{4} \\
-4 x+16
\end{array} \\
\quad 5 x=5
\end{array}\right] \begin{aligned}
& x=1, \text { so } y=-1+4=3 \\
& \text { The centre of the circle is }(1,3) .
\end{aligned}
$$

The radius is the distance from the centre of the circle $(1,3)$ to a point on the circumference $C(6$, $0)$:

Radius $=\sqrt{(6-1)^{2}+(0-3)^{2}}=\sqrt{34}$
The equation of the circle is $(x-1)^{2}+(y-3)^{2}=34$

Pure Mathematics 2

25 a i $\quad A(-7,7)$ and $B(1,9)$
The gradient of the line $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-7}{1+7}=\frac{1}{4}$
So the gradient of the line perpendicular to $A B$, is -4 .
Midpoint of $A B=\left(\frac{-7+1}{2}, \frac{7+9}{2}\right)=(-3,8)$
The equation of the perpendicular line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=-4 \text { and }\left(x_{1}, y_{1}\right)=(-3,8) \\
& \text { So } y-8=-4(x+3) \\
& \quad y=-4 x-4
\end{aligned}
$$

ii $C(3,1)$ and $D(-7,1)$
The line $C D$ is $y=1$
Midpoint of $C D=\left(\frac{3-7}{2}, \frac{1+1}{2}\right)=(-2,1)$
The equation of the perpendicular line is $x=-2$
b The two perpendicular bisectors cross at the centre of the circle
Solve $y=-4 x-4$ and $x=-2$ simultaneously:
$y=-4(-2)-4=4$
The centre of the circle $=(-2,4)$
The radius is the distance from the centre of the circle $(-2,4)$ to a point on the circumference $C(3,1)$:
Radius $=\sqrt{(3+2)^{2}+(1-4)^{2}}=\sqrt{34}$
The equation of the circle is $(x+2)^{2}+(y-4)^{2}=34$

Pure Mathematics 2

Challenge

a Solve $(x-5)^{2}+(y-3)^{2}=20$ and $(x-10)^{2}+(y-8)^{2}=10$ simultaneously:

$$
\begin{aligned}
& x^{2}-10 x+25+y^{2}-6 y+9=20 \text { and } x^{2}-20 x+100+y^{2}-16 y+64=10 \\
& x^{2}-10 x+y^{2}-6 y+14=0 \text { and } x^{2}-20 x+y^{2}-16 y+154=0 \\
& x^{2}-10 x+y^{2}-6 y+14=x^{2}-20 x+y^{2}-16 y+154 \\
&-10 x-6 y+14=-20 x-16 y+154 \\
& 10 x+10 y=140 \\
& x+y=14 \\
& x+y-14=0
\end{aligned}
$$

b Solve $(x-5)^{2}+(y-3)^{2}=20$ and $x+y=14$ simultaneously:

$$
\begin{aligned}
& (9-y)^{2}+(y-3)^{2}=20 \\
& 81-18 y+y^{2}+y^{2}-6 y+9=20 \\
& 2 y^{2}-24 y+70=0 \\
& y^{2}-12 y+35=0 \\
& (y-5)(y-7)=0 \\
& y=5 \text { or } y=7
\end{aligned}
$$

When $y=5, x=14-5=9$
When $y=7, x=14-7=7$
$P(7,7)$ and $Q(9,5)$
c Area of kite $A P B Q=\frac{1}{2} \times P Q \times A B$
$P Q=\sqrt{(9-7)^{2}+(5-7)^{2}}=\sqrt{8}$
$A(5,3)$ and $B(10,8)$

$$
\begin{aligned}
& A B=\sqrt{(10-5)^{2}+(8-3)^{2}}=\sqrt{50} \\
& \quad \text { Area }=\frac{1}{2} \times \sqrt{8} \times \sqrt{50}=\frac{1}{2} \times \sqrt{400}=10 \text { units }^{2}
\end{aligned}
$$

